Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Neurol Res Pract ; 6(1): 15, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38449051

RESUMEN

INTRODUCTION: In Multiple Sclerosis (MS), patients´ characteristics and (bio)markers that reliably predict the individual disease prognosis at disease onset are lacking. Cohort studies allow a close follow-up of MS histories and a thorough phenotyping of patients. Therefore, a multicenter cohort study was initiated to implement a wide spectrum of data and (bio)markers in newly diagnosed patients. METHODS: ProVal-MS (Prospective study to validate a multidimensional decision score that predicts treatment outcome at 24 months in untreated patients with clinically isolated syndrome or early Relapsing-Remitting-MS) is a prospective cohort study in patients with clinically isolated syndrome (CIS) or Relapsing-Remitting (RR)-MS (McDonald 2017 criteria), diagnosed within the last two years, conducted at five academic centers in Southern Germany. The collection of clinical, laboratory, imaging, and paraclinical data as well as biosamples is harmonized across centers. The primary goal is to validate (discrimination and calibration) the previously published DIFUTURE MS-Treatment Decision score (MS-TDS). The score supports clinical decision-making regarding the options of early (within 6 months after study baseline) platform medication (Interferon beta, glatiramer acetate, dimethyl/diroximel fumarate, teriflunomide), or no immediate treatment (> 6 months after baseline) of patients with early RR-MS and CIS by predicting the probability of new or enlarging lesions in cerebral magnetic resonance images (MRIs) between 6 and 24 months. Further objectives are refining the MS-TDS score and providing data to identify new markers reflecting disease course and severity. The project also provides a technical evaluation of the ProVal-MS cohort within the IT-infrastructure of the DIFUTURE consortium (Data Integration for Future Medicine) and assesses the efficacy of the data sharing techniques developed. PERSPECTIVE: Clinical cohorts provide the infrastructure to discover and to validate relevant disease-specific findings. A successful validation of the MS-TDS will add a new clinical decision tool to the armamentarium of practicing MS neurologists from which newly diagnosed MS patients may take advantage. Trial registration ProVal-MS has been registered in the German Clinical Trials Register, `Deutsches Register Klinischer Studien` (DRKS)-ID: DRKS00014034, date of registration: 21 December 2018; https://drks.de/search/en/trial/DRKS00014034.

2.
Front Digit Health ; 6: 1341475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510279

RESUMEN

Introduction: Today, modern technology is used to diagnose and treat cardiovascular disease. These medical devices provide exact measures and raw data such as imaging data or biosignals. So far, the Broad Integration of These Health Data into Hospital Information Technology Structures-Especially in Germany-is Lacking, and if data integration takes place, only non-Evaluable Findings are Usually Integrated into the Hospital Information Technology Structures. A Comprehensive Integration of raw Data and Structured Medical Information has not yet Been Established. The aim of this project was to design and implement an interoperable database (cardio-vascular-information-system, CVIS) for the automated integration of al medical device data (parameters and raw data) in cardio-vascular medicine. Methods: The CVIS serves as a data integration and preparation system at the interface between the various devices and the hospital IT infrastructure. In our project, we were able to establish a database with integration of proprietary device interfaces, which could be integrated into the electronic health record (EHR) with various HL7 and web interfaces. Results: In the period between 1.7.2020 and 30.6.2022, the data integrated into this database were evaluated. During this time, 114,858 patients were automatically included in the database and medical data of 50,295 of them were entered. For technical examinations, more than 4.5 million readings (an average of 28.5 per examination) and 684,696 image data and raw signals (28,935 ECG files, 655,761 structured reports, 91,113 x-ray objects, 559,648 ultrasound objects in 54 different examination types, 5,000 endoscopy objects) were integrated into the database. Over 10.2 million bidirectional HL7 messages (approximately 14,000/day) were successfully processed. 98,458 documents were transferred to the central document management system, 55,154 materials (average 7.77 per order) were recorded and stored in the database, 21,196 diagnoses and 50,353 services/OPS were recorded and transferred. On average, 3.3 examinations per patient were recorded; in addition, there are an average of 13 laboratory examinations. Discussion: Fully automated data integration from medical devices including the raw data is feasible and already creates a comprehensive database for multimodal modern analysis approaches in a short time. This is the basis for national and international projects by extracting research data using FHIR.

3.
Trials ; 25(1): 125, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365848

RESUMEN

BACKGROUND: As part of the German Medical Informatics Initiative, the MIRACUM project establishes data integration centers across ten German university hospitals. The embedded MIRACUM Use Case "Alerting in Care - IT Support for Patient Recruitment", aims to support the recruitment into clinical trials by automatically querying the repositories for patients satisfying eligibility criteria and presenting them as screening candidates. The objective of this study is to investigate whether the developed recruitment tool has a positive effect on study recruitment within a multi-center environment by increasing the number of participants. Its secondary objective is the measurement of organizational burden and user satisfaction of the provided IT solution. METHODS: The study uses an Interrupted Time Series Design with a duration of 15 months. All trials start in the control phase of randomized length with regular recruitment and change to the intervention phase with additional IT support. The intervention consists of the application of a recruitment-support system which uses patient data collected in general care for screening according to specific criteria. The inclusion and exclusion criteria of all selected trials are translated into a machine-readable format using the OHDSI ATLAS tool. All patient data from the data integration centers is regularly checked against these criteria. The primary outcome is the number of participants recruited per trial and week standardized by the targeted number of participants per week and the expected recruitment duration of the specific trial. Secondary outcomes are usability, usefulness, and efficacy of the recruitment support. Sample size calculation based on simple parallel group assumption can demonstrate an effect size of d=0.57 on a significance level of 5% and a power of 80% with a total number of 100 trials (10 per site). Data describing the included trials and the recruitment process is collected at each site. The primary analysis will be conducted using linear mixed models with the actual recruitment number per week and trial standardized by the expected recruitment number per week and trial as the dependent variable. DISCUSSION: The application of an IT-supported recruitment solution developed in the MIRACUM consortium leads to an increased number of recruited participants in studies at German university hospitals. It supports employees engaged in the recruitment of trial participants and is easy to integrate in their daily work.


Asunto(s)
Análisis de Series de Tiempo Interrumpido , Selección de Paciente , Humanos , Hospitales Universitarios , Resultado del Tratamiento , Estudios Multicéntricos como Asunto
4.
Respir Res ; 25(1): 38, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238846

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory multisystemic disease caused by environmental exposures and/or genetic factors. Inherited alpha-1-antitrypsin deficiency (AATD) is one of the best recognized genetic factors increasing the risk for an early onset COPD with emphysema. The aim of this study was to gain a better understanding of the associations between comorbidities and specific biomarkers in COPD patients with and without AATD to enable future investigations aimed, for example, at identifying risk factors or improving care. METHODS: We focused on cardiovascular comorbidities, blood high sensitivity troponin (hs-troponin) and lipid profiles in COPD patients with and without AATD. We used clinical data from six German University Medical Centres of the MIRACUM (Medical Informatics Initiative in Research and Medicine) consortium. The codes for the international classification of diseases (ICD) were used for COPD as a main diagnosis and for comorbidities and blood laboratory data were obtained. Data analyses were based on the DataSHIELD framework. RESULTS: Out of 112,852 visits complete information was available for 43,057 COPD patients. According to our findings, 746 patients with AATD (1.73%) showed significantly lower total blood cholesterol levels and less cardiovascular comorbidities than non-AATD COPD patients. Moreover, after adjusting for the confounder factors, such as age, gender, and nicotine abuse, we confirmed that hs-troponin is a suitable predictor of overall mortality in COPD patients. The comorbidities associated with AATD in the current study differ from other studies, which may reflect geographic and population-based differences as well as the heterogeneous characteristics of AATD. CONCLUSION: The concept of MIRACUM is suitable for the analysis of a large healthcare database. This study provided evidence that COPD patients with AATD have a lower cardiovascular risk and revealed that hs-troponin is a predictor for hospital mortality in individuals with COPD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/epidemiología , Deficiencia de alfa 1-Antitripsina/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Factores de Riesgo de Enfermedad Cardiaca , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Factores de Riesgo , Troponina
5.
Stud Health Technol Inform ; 310: 1271-1275, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270019

RESUMEN

To understand and handle the COVID-19 pandemic, digital tools and infrastructures were built in very short timeframes, resulting in stand-alone and non-interoperable solutions. To shape an interoperable, sustainable, and extensible ecosystem to advance biomedical research and healthcare during the pandemic and beyond, a short-term project called "Collaborative Data Exchange and Usage" (CODEX+) was initiated to integrate and connect multiple COVID-19 projects into a common organizational and technical framework. In this paper, we present the conceptual design, provide an overview of the results, and discuss the impact of such a project for the trade-off between innovation and sustainable infrastructures.


Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Centros Médicos Académicos , COVID-19/epidemiología , Instituciones de Salud , Pandemias
7.
Sci Data ; 10(1): 654, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741862

RESUMEN

The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.


Asunto(s)
COVID-19 , Humanos , Pandemias , Alemania , Instituciones de Salud , Humanidades
8.
N Biotechnol ; 77: 120-129, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37652265

RESUMEN

Standardised medical terminologies are used to ensure accurate and consistent communication of information and to facilitate data exchange. Currently, many terminologies are only available in English, which hinders international research and automated processing of medical data. Natural language processing (NLP) and Machine Translation (MT) methods can be used to automatically translate these terms. This scoping review examines the research on automated translation of standardised medical terminology. A search was performed in PubMed and Web of Science and results were screened for eligibility by title and abstract as well as full text screening. In addition to bibliographic data, the following data items were considered: 'terminology considered', 'terms considered', 'source language', 'target language', 'translation type', 'NLP technique', 'NLP system', 'machine translation system', 'data source' and 'translation quality'. The results showed that the most frequently translated terminology is SNOMED CT (39.1%), followed by MeSH (13%), ICD (13%) and UMLS (8.7%). The most common source language is English (55.9%), and the most common target language is German (41.2%). Translation methods are often based on Statistical Machine Translation (SMT) (41.7%) and, more recently, Neural Machine Translation (NMT) (30.6%), but can also be combined with various MT methods. Commercial translators such as Google Translate (36.4%) and automatic validation methods such as BLEU (22.2%) are frequently used tools for translation and subsequent validation.


Asunto(s)
Procesamiento de Lenguaje Natural , Traducción , Lenguaje , Systematized Nomenclature of Medicine
9.
JAMIA Open ; 6(3): ooad068, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37583654

RESUMEN

Objective: i2b2 offers the possibility to store biomedical data of different projects in subject oriented data marts of the data warehouse, which potentially requires data replication between different projects and also data synchronization in case of data changes. We present an approach that can save this effort and assess its query performance in a case study that reflects real-world scenarios. Material and Methods: For data segregation, we used PostgreSQL's row level security (RLS) feature, the unit test framework pgTAP for validation and testing as well as the i2b2 application. No change of the i2b2 code was required. Instead, to leverage orchestration and deployment, we additionally implemented a command line interface (CLI). We evaluated performance using 3 different queries generated by i2b2, which we performed on an enlarged Harvard demo dataset. Results: We introduce the open source Python CLI i2b2rls, which orchestrates and manages security roles to implement data marts so that they do not need to be replicated and synchronized as different i2b2 projects. Our evaluation showed that our approach is on average 3.55 and on median 2.71 times slower compared to classic i2b2 data marts, but has more flexibility and easier setup. Conclusion: The RLS-based approach is particularly useful in a scenario with many projects, where data is constantly updated, user and group requirements change frequently or complex user authorization requirements have to be defined. The approach applies to both the i2b2 interface and direct database access.

10.
JMIR Cancer ; 9: e40891, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498653

RESUMEN

BACKGROUND: Mobile health (mHealth) tools were developed during the past decades and are increasingly used by patients in cancer care too. Scientific research in the development of mHealth services is required in order to meet the various needs of patients and test usability. OBJECTIVE: The aim of this study is to assess patients' needs, preferences, and usability of an app (My University Clinic [MUC] app) developed by the Comprehensive Cancer Center Freiburg (CCCF) Germany. METHODS: Based on a qualitative cross-sectional approach, we conducted semistructured interviews with patients with cancer, addressing their needs, preferences, and usability of the designed MUC app. Patients treated by the CCCF were recruited based on a purposive sampling technique focusing on age, sex, cancer diagnoses, and treatment setting (inpatient, outpatient). Data analysis followed the qualitative content analysis according to Kuckartz and was performed using computer-assisted software (MAXQDA). RESULTS: For the interviews, 17 patients with cancer were selected, covering a broad range of sampling parameters. The results showed that patients expect benefits in terms of improved information about the disease and communication with the clinic staff. Demands for additional features were identified (eg, a list of contact persons and medication management). The most important concerns referred to data security and the potential restriction of personal contacts with health care professionals of the clinical departments of the CCCF. In addition, some features for improving the design of the MUC app with respect to usability or for inclusion of interacting tools were suggested by the patients. CONCLUSIONS: The results of this qualitative study were discussed within the multidisciplinary team and the MUC app providers. Patients' perspectives and needs will be included in further development of the MUC app. There will be a second study phase in which patients will receive a test version of the MUC app and will be asked about their experiences with it. TRIAL REGISTRATION: Deutsches Register Klinischer Studien DRKS00022162; https://drks.de/search/de/trial/DRKS00022162.

11.
Stud Health Technol Inform ; 305: 110-114, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386970

RESUMEN

In medical data science, FHIR provides an increasingly used information model, which will lead to the creation of FHIR warehouses in the future. To efficiently work with a FHIR-based representation, users need a visual representation. The modern UI framework ReactAdmin (RA) enhances usability by leveraging current web standards such as React and Material Design. Rapid development and implementation of usable modern UIs is made possible by its high modularity and many widgets available in the framework. For data connection to different data sources RA needs a DataProvider (DP), which maps the communication from the server to the provided components. In this work, we present a DataProvider for FHIR that enables future UI developments for FHIR servers using RA. A demo application demonstrates the DP's capabilities. The code is published under MIT license.


Asunto(s)
Medicina , Programas Informáticos , Comunicación , Ciencia de los Datos
12.
Stud Health Technol Inform ; 302: 835-836, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203512

RESUMEN

The largest publicly funded project to generate a German-language medical text corpus will start in mid-2023. GeMTeX comprises clinical texts from information systems of six university hospitals, which will be made accessible for NLP by annotation of entities and relations, which will be enhanced with additional meta-information. A strong governance provides a stable legal framework for the use of the corpus. State-of-the art NLP methods are used to build, pre-annotate and annotate the corpus and train language models. A community will be built around GeMTeX to ensure its sustainable maintenance, use, and dissemination.


Asunto(s)
Lenguaje , Procesamiento de Lenguaje Natural , Humanos
13.
Stud Health Technol Inform ; 302: 272-276, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203661

RESUMEN

The German Medical Informatics Initiative makes clinical routine data available for biomedical research. In total, 37 university hospitals have set up so-called data integration centers to facilitate this data reuse. A standardized set of HL7 FHIR profiles ("MII Core Data Set") defines the common data model across all centers. Regular Projectathons ensure continuous evaluation of the implemented data sharing processes on artificial and real-world clinical use cases. In this context, FHIR continues to rise in popularity for exchanging patient care data. As reusing data from patient care in clinical research requires high trust in the data, data quality assessments are a key point of concern in the data sharing process. To support the setup of data quality assessments within data integration centers, we suggest a process for finding elements of interest from FHIR profiles. We focus on the specific data quality measures defined by Kahn et al.


Asunto(s)
Investigación Biomédica , Informática Médica , Humanos , Registros Electrónicos de Salud , Exactitud de los Datos , Hospitales Universitarios
14.
J Am Med Inform Assoc ; 30(6): 1179-1189, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080557

RESUMEN

OBJECTIVE: The objective was to develop a dataset definition, information model, and FHIR® specification for key data elements contained in a German molecular genomics (MolGen) report to facilitate genomic and phenotype integration in electronic health records. MATERIALS AND METHODS: A dedicated expert group participating in the German Medical Informatics Initiative reviewed information contained in MolGen reports, determined the key elements, and formulated a dataset definition. HL7's Genomics Reporting Implementation Guide (IG) was adopted as a basis for the FHIR® specification which was subjected to a public ballot. In addition, elements in the MolGen dataset were mapped to the fields defined in ISO/TS 20428:2017 standard to evaluate compliance. RESULTS: A core dataset of 76 data elements, clustered into 6 categories was created to represent all key information of German MolGen reports. Based on this, a FHIR specification with 16 profiles, 14 derived from HL7®'s Genomics Reporting IG and 2 additional profiles (of the FamilyMemberHistory and RiskAssessment resources), was developed. Five example resource bundles show how our adaptation of an international standard can be used to model MolGen report data that was requested following oncological or rare disease indications. Furthermore, the map of the MolGen report data elements to the fields defined by the ISO/TC 20428:2017 standard, confirmed the presence of the majority of required fields. CONCLUSIONS: Our report serves as a template for other research initiatives attempting to create a standard format for unstructured genomic report data. Use of standard formats facilitates integration of genomic data into electronic health records for clinical decision support.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Estándar HL7 , Registros Electrónicos de Salud , Genómica , Alemania
15.
J Med Internet Res ; 25: e41177, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996044

RESUMEN

BACKGROUND: Clinical practice guidelines are systematically developed statements intended to optimize patient care. However, a gapless implementation of guideline recommendations requires health care personnel not only to be aware of the recommendations and to support their content but also to recognize every situation in which they are applicable. To not miss situations in which recommendations should be applied, computerized clinical decision support can be provided through a system that allows an automated monitoring of adherence to clinical guideline recommendations in individual patients. OBJECTIVE: This study aims to collect and analyze the requirements for a system that allows the monitoring of adherence to evidence-based clinical guideline recommendations in individual patients and, based on these requirements, to design and implement a software prototype that integrates guideline recommendations with individual patient data, and to demonstrate the prototype's utility in treatment recommendations. METHODS: We performed a work process analysis with experienced intensive care clinicians to develop a conceptual model of how to support guideline adherence monitoring in clinical routine and identified which steps in the model could be supported electronically. We then identified the core requirements of a software system to support recommendation adherence monitoring in a consensus-based requirements analysis within the loosely structured focus group work of key stakeholders (clinicians, guideline developers, health data engineers, and software developers). On the basis of these requirements, we designed and implemented a modular system architecture. To demonstrate its utility, we applied the prototype to monitor adherence to a COVID-19 treatment recommendation using clinical data from a large European university hospital. RESULTS: We designed a system that integrates guideline recommendations with real-time clinical data to evaluate individual guideline recommendation adherence and developed a functional prototype. The needs analysis with clinical staff resulted in a flowchart describing the work process of how adherence to recommendations should be monitored. Four core requirements were identified: the ability to decide whether a recommendation is applicable and implemented for a specific patient, the ability to integrate clinical data from different data formats and data structures, the ability to display raw patient data, and the use of a Fast Healthcare Interoperability Resources-based format for the representation of clinical practice guidelines to provide an interoperable, standards-based guideline recommendation exchange format. CONCLUSIONS: Our system has advantages in terms of individual patient treatment and quality management in hospitals. However, further studies are needed to measure its impact on patient outcomes and evaluate its resource effectiveness in different clinical settings. We specified a modular software architecture that allows experts from different fields to work independently and focus on their area of expertise. We have released the source code of our system under an open-source license and invite for collaborative further development of the system.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Humanos , Grupos Focales , Adhesión a Directriz
16.
Ther Adv Neurol Disord ; 16: 17562864231161892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993939

RESUMEN

Background: Multiple sclerosis (MS) is a chronic neuroinflammatory disease affecting about 2.8 million people worldwide. Disease course after the most common diagnoses of relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) is highly variable and cannot be reliably predicted. This impairs early personalized treatment decisions. Objectives: The main objective of this study was to algorithmically support clinical decision-making regarding the options of early platform medication or no immediate treatment of patients with early RRMS and CIS. Design: Retrospective monocentric cohort study within the Data Integration for Future Medicine (DIFUTURE) Consortium. Methods: Multiple data sources of routine clinical, imaging and laboratory data derived from a large and deeply characterized cohort of patients with MS were integrated to conduct a retrospective study to create and internally validate a treatment decision score [Multiple Sclerosis Treatment Decision Score (MS-TDS)] through model-based random forests (RFs). The MS-TDS predicts the probability of no new or enlarging lesions in cerebral magnetic resonance images (cMRIs) between 6 and 24 months after the first cMRI. Results: Data from 65 predictors collected for 475 patients between 2008 and 2017 were included. No medication and platform medication were administered to 277 (58.3%) and 198 (41.7%) patients. The MS-TDS predicted individual outcomes with a cross-validated area under the receiver operating characteristics curve (AUROC) of 0.624. The respective RF prediction model provides patient-specific MS-TDS and probabilities of treatment success. The latter may increase by 5-20% for half of the patients if the treatment considered superior by the MS-TDS is used. Conclusion: Routine clinical data from multiple sources can be successfully integrated to build prediction models to support treatment decision-making. In this study, the resulting MS-TDS estimates individualized treatment success probabilities that can identify patients who benefit from early platform medication. External validation of the MS-TDS is required, and a prospective study is currently being conducted. In addition, the clinical relevance of the MS-TDS needs to be established.

17.
J Biomed Inform ; 139: 104305, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738871

RESUMEN

BACKGROUND: Various formalisms have been developed to represent clinical practice guideline recommendations in a computer-interpretable way. However, none of the existing formalisms leverage the structured and computable information that emerge from the evidence-based guideline development process. Thus, we here propose a FHIR-based format that uses computer-interpretable representations of the knowledge artifacts that emerge during the process of evidence-based guideline development to directly serve as the basis of evidence-based recommendations. METHODS: We identified the information required to represent evidence-based clinical practice guideline recommendations and reviewed the knowledge artifacts emerging during the evidence-based guideline development process. We then conducted a consensus-based design process with domain experts to develop an information model for guideline recommendation representation that is structurally aligned to the evidence-based guideline recommendation development process and a corresponding representation based on FHIR resources developed for evidence-based medicine (EBMonFHIR). The resulting recommendations were modelled and represented in conformance with the FHIR Clinical Guidelines (CPG-on-FHIR) implementation guide. RESULTS: The information model of evidence-based clinical guideline recommendations and its EBMonFHIR-/CPG-on-FHIR-based representation contain the clinical contents of individual guideline recommendations, a set of metadata for the recommendations, the ratings for the recommendations (e.g., strength of recommendation, certainty of overall evidence), the ratings of certainty of evidence for individual outcomes (e.g., risk of bias) and links to the underlying evidence (systematic reviews based on primary studies). We created profiles and an implementation guide for all FHIR resources required to represent the knowledge artifacts generated during evidence-based guideline development and their re-use as the basis for recommendations and used the profiles to implement an exemplary clinical guideline recommendation. CONCLUSIONS: The FHIR implementation guide presented here can be used to directly link the evidence assessment process of evidence-based guideline recommendation development, i.e. systematic reviews and evidence grading, and the underlying evidence from primary studies to the resulting guideline recommendations. This not only allows the evidence on which recommendations are based on to be evaluated transparently and critically, but also enables guideline developers to leverage computable evidence in a more direct way to facilitate the generation of computer-interpretable guideline recommendations.


Asunto(s)
Medicina Basada en la Evidencia , Guías de Práctica Clínica como Asunto , Medicina Basada en la Evidencia/métodos
18.
BMC Neurol ; 23(1): 2, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36597038

RESUMEN

BACKGROUND: Although of high individual and socioeconomic relevance, a reliable prediction model for the prognosis of juvenile stroke (18-55 years) is missing. Therefore, the study presented in this protocol aims to prospectively validate the discriminatory power of a prediction score for the 3 months functional outcome after juvenile stroke or transient ischemic attack (TIA) that has been derived from an independent retrospective study using standard clinical workup data. METHODS: PREDICT-Juvenile-Stroke is a multi-centre (n = 4) prospective observational cohort study collecting standard clinical workup data and data on treatment success at 3 months after acute ischemic stroke or TIA that aims to validate a new prediction score for juvenile stroke. The prediction score has been developed upon single center retrospective analysis of 340 juvenile stroke patients. The score determines the patient's individual probability for treatment success defined by a modified Rankin Scale (mRS) 0-2 or return to pre-stroke baseline mRS 3 months after stroke or TIA. This probability will be compared to the observed clinical outcome at 3 months using the area under the receiver operating characteristic curve. The primary endpoint is to validate the clinical potential of the new prediction score for a favourable outcome 3 months after juvenile stroke or TIA. Secondary outcomes are to determine to what extent predictive factors in juvenile stroke or TIA patients differ from those in older patients and to determine the predictive accuracy of the juvenile stroke prediction score on other clinical and paraclinical endpoints. A minimum of 430 juvenile patients (< 55 years) with acute ischemic stroke or TIA, and the same number of older patients will be enrolled for the prospective validation study. DISCUSSION: The juvenile stroke prediction score has the potential to enable personalisation of counselling, provision of appropriate information regarding the prognosis and identification of patients who benefit from specific treatments. TRIAL REGISTRATION: The study has been registered at https://drks.de on March 31, 2022 ( DRKS00024407 ).


Asunto(s)
Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Adulto Joven , Anciano , Ataque Isquémico Transitorio/diagnóstico , Ataque Isquémico Transitorio/epidemiología , Ataque Isquémico Transitorio/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/complicaciones , Pronóstico , Valor Predictivo de las Pruebas , Estudios Observacionales como Asunto
19.
J Med Internet Res ; 24(10): e38041, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36279164

RESUMEN

BACKGROUND: Visual analysis and data delivery in the form of visualizations are of great importance in health care, as such forms of presentation can reduce errors and improve care and can also help provide new insights into long-term disease progression. Information visualization and visual analytics also address the complexity of long-term, time-oriented patient data by reducing inherent complexity and facilitating a focus on underlying and hidden patterns. OBJECTIVE: This review aims to provide an overview of visualization techniques for time-oriented data in health care, supporting the comparison of patients. We systematically collected literature and report on the visualization techniques supporting the comparison of time-based data sets of single patients with those of multiple patients or their cohorts and summarized the use of these techniques. METHODS: This scoping review used the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. After all collected articles were screened by 16 reviewers according to the criteria, 6 reviewers extracted the set of variables under investigation. The characteristics of these variables were based on existing taxonomies or identified through open coding. RESULTS: Of the 249 screened articles, we identified 22 (8.8%) that fit all criteria and reviewed them in depth. We collected and synthesized findings from these articles for medical aspects such as medical context, medical objective, and medical data type, as well as for the core investigated aspects of visualization techniques, interaction techniques, and supported tasks. The extracted articles were published between 2003 and 2019 and were mostly situated in clinical research. These systems used a wide range of visualization techniques, most frequently showing changes over time. Timelines and temporal line charts occurred 8 times each, followed by histograms with 7 occurrences and scatterplots with 5 occurrences. We report on the findings quantitatively through visual summarization, as well as qualitatively. CONCLUSIONS: The articles under review in general mitigated complexity through visualization and supported diverse medical objectives. We identified 3 distinct patient entities: single patients, multiple patients, and cohorts. Cohorts were typically visualized in condensed form, either through prior data aggregation or through visual summarization, whereas visualization of individual patients often contained finer details. All the systems provided mechanisms for viewing and comparing patient data. However, explicitly comparing a single patient with multiple patients or a cohort was supported only by a few systems. These systems mainly use basic visualization techniques, with some using novel visualizations tailored to a specific task. Overall, we found the visual comparison of measurements between single and multiple patients or cohorts to be underdeveloped, and we argue for further research in a systematic review, as well as the usefulness of a design space.


Asunto(s)
Lista de Verificación , Atención a la Salud , Humanos , Publicaciones
20.
BMC Health Serv Res ; 22(1): 1060, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986287

RESUMEN

BACKGROUND: Urinary stone disease is a widespread disease with tremendous impact on those affected and on societies around the globe. Nevertheless, clinical and health care research in this area seem to lag far behind cardiovascular diseases or cancer. This may be due to the lack of an immediate deadly threat from the disease and therefore less public and professional interest. However, the patients suffer from recurring, sometimes intense pain and often must be treated in hospital. Long-term morbidity includes doubled rates of chronic kidney disease and arterial hypertension after at least one stone-related event. Observational studies, more specifically, registries and other electronic data sets have been proposed as a means of filling critical gaps in evidence. We propose a nationwide digital and fully automated registry as part of the German Ministry for Education and Research (BMBF) call for the "establishment of model registries". METHODS: RECUR builds on the technical infrastructure of Germany's Medical Informatics Initiative. Local data integration centres (DIC) of participating medical universities will collect pseudonymized and harmonized data from respective hospital information systems. In addition to their clinical data, participants will provide patient reported outcomes using a mobile patient app. Scientific data exploration includes queries and analysis of federated data from DICs of eleven participating sites. All primary patient data will remain at the participating sites at all times. With comprehensive data from this longitudinal registry, we will be able to describe the disease burden, to determine and validate risk factors, and to evaluate treatments. Implementation and operation of the RECUR registry will be funded by the BMBF for five years. Subsequently, the registry is to be continued by the German Society of Urology without significant costs for study personnel. DISCUSSION: The proposed registry will substantially improve the structural and procedural framework for patients with recurrent urolithiasis. This includes advanced diagnostic algorithms and treatment pathways. The registry will help us identify those patients who will most benefit from specific interventions to prevent recurrences. The RECUR study protocol and the registry's technical architecture including full digitalization and automation of almost all registry-associated proceedings can be transferred to future registries. TRIAL REGISTRATION: This study is registered at the German Clinical Trial Register (Deutsches Register Klinischer Studien), DRKS-ID DRKS00026923 , date of registration January, 11th 2022.


Asunto(s)
Sistema Urinario , Urolitiasis , Humanos , Medición de Resultados Informados por el Paciente , Recurrencia , Sistema de Registros , Urolitiasis/epidemiología , Urolitiasis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...